
Selected Parts of a Hypothetical Paper for the

International Journal of Thermophysics

Oscillating Cup Viscosity Measurements of Aluminum 

Alloys: A356 and 319 1

Deming Wang 2 and R. A. Overfelt 2, 3

1 Paper presented at the Fourteenth Symposium on Thermophysical Properties, June 25 -

30, 2000, Boulder, Colorado, U.S.A.

2 Department of Mechanical Engineering, 201 Ross Hall, Auburn University, Alabama

36849.

3 To whom correspondence should be addressed.



1

Abstract

An oscillating cup viscometer was developed at Auburn University to measure the

viscosities of molten metals. Previous experiments established the capability of the apparatus

to characterize the viscosities of molten nickel-based superalloys. However, modifications to

the instrument and its theoretical analysis were required for reliable measurements on molten

aluminum alloys, presumably due to their lower densities and lower viscosities. The theoretic

literature for the fluid flow inside an oscillating cup is reviewed and a working equation

without any correction factor is developed for the improved viscometer. Some design

parameters of the viscometer which directly affect the accuracy of viscosity estimation by using

the working equation are discussed. A special vertical furnace was adopted to uniformly heat

a longer cylinder sample (10 mm inner diameter and 120 mm long) with temperature difference

over the sample length of less than 2 oC. The measuring procedure was also improved to get

more accurate motion parameters. It is estimated that the working equation and improved

instrument exhibit an error less than 4%. In addition, applications and experimental  data are

presented for pure aluminum and two aluminum alloys A356 and A319.
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1 Introduction

The oscillating cup viscometer has become a dominant technique to measure the

viscosities of high temperature liquids[1-3]. In the viscometer, a high temperature liquid (such

as a molten metal) is contained within a crucible suspended by a wire to form a torsional

pendulum, which induces torsional oscillation motion. This motion is damped primarily by

viscous dissipation within the viscous liquid inside the crucible. The viscosity of the liquid can

be calculated by an analytical or numerical solution of the equations of motion of the

oscillating cup system. The principal advantages of this technique over others are its

mechanical simplicity and the ability to measure the time period and amplitude decay with

great precision.

Since the1960s, a number of successful viscometers and their working equations have

been developed to measure the viscosities of liquids at high temperature [4-6]. But, there are

still large discrepancies between laboratories, sometimes amounting to 50%. It is commonly

considered that the errors come from the different kinds viscometers and viscosity estimation

methods. Further study of the principle of viscometers and their working equations is still very

important to improve these measurement techniques and obtain reliable viscosity data for

science and industry.

Roscoe[7-8] proposed an approximate method to calculate the viscosity from the

measured motion parameters. In the method, a correction factor from a known viscosity

material is needed to calibrate the measured results. Advantages of the method are that it is

simple to use and easy to understand; so this method is still often employed [2]. Kestin and

Newell [9] and Beckwitt and Newell [10] provided another analytic method and working

equation to calculate viscosities of  liquids from measured the oscillation parameters. This

method does not need any correction factor since an exact solution of the equation motion of

oscillating cup systems is given. One of the primary advantages is the method eliminates
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calculation error from mathematical process. For some oscillating cup viscometers, calculation

error is less than 0.01%.  So, it is preferred to be accepted by many investigators. Ohta and et.

[11] used the method for their viscometer with oscillation spheric body. Torklep and Oye [12]

also used it for their new generation oscillation cup viscometer and they presented a set of

simplified calculation formulae. Nunez and al.[3] also used the method for their new high-

temperature viscometer to measure the viscosity of molten salts.  However, because of the

elimination of the correction factor,  this method cannot correct for any other errors which

come from the viscometer itself and the measuring procedure, such as, the determination of a

stiffness parameter, inertial damping and inertial moment of the oscillation system, or data

acquisition, curve-fit of a harmonical function, nonlinearity of oscillation of the system, or

turbulent flow in the liquid. These effects also can introduce error in the viscosity measurement

they cannot be corrected in the working equation. Thus clear understanding of the theory of the

oscillating cup is required to obtain reliable data.

In this paper, a working equation without a correct factor is developed. The detail of

the equation will be given by motion analysis of the system to define the relationship between

viscosity and damping oscillation motion parameters.

2. Motion Analysis

In an oscillating cup system, a cup with a viscous liquid is suspended by an elastic wire.

The cup is forced to rotate through an angle along the wire axis and then held motionless (see

Fig. 1). When the cup is released,  it will freely oscillate due to an elastic force which comes

from the suspended wire. If the oscillation is considered as a simple harmonic motion, the two

oscillation motion parameters, oscillation frequency � and damping parameter �, can be

measured by a curve fit technique. The viscosity of an experimental liquid can be calculated

from the two motion parameters, other physical parameters of the system and sizes of the

sample.
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Fig. 1  A torsional pendulum

For an empty oscillating cup, a simple harmonic oscillation can be described as:

(1)α α ω φω( ) ( ) sin ( )t t e tt= +−
0 0

0 0∆

where �(t) is an angular displacement of the body from equilibrium and �0(t) is the initial

angular displacement, � is an oscillatory phase shift, �0 is an angular frequency of the cup

system without the liquid, and �0 is a logarithmic decrement of the amplitude of the oscillation

without the viscous liquid, which is caused by the internal friction of the wire and the

res i s t ance  i n  t he

surrounding air. 

Based on mechanical dynamics, the dynamic equation of the cup without  liquid can

be written as:
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The angular frequency and damping parameter are:
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where Io, co, k are respectively an initial moment of the cup, a damping coefficient of the

suspended wire and a stiffness coefficient of the suspended wire.  � is a dimensionless unit of

time, 

. (5)τ ω= 0 t

If the oscillating cup contains a viscous liquid, the friction force which comes from the

liquid can be considered as an external applied force and put it on the right side of equation (2).

So, the motion equation of the cup system with the viscous liquid becomes: 
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By using the Laplace transform, the above motion equation is  rewritten as the function of a

complex frequency s.

(7)[( ) ] ( )
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M s
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Where and are respectively the transforms of and . α ( )s M s( ) α τ( ) M ( )τ

If the liquid inside the oscillating cup is considered as an ideal viscous fluid, the rate

of flow is a function of the stress. The ratio of applied shearing stress to the rate of shear for

an ideal viscous body is called the coefficient of viscosity, .ηD

(8)( ) ( )η δ δσ δ δD s F A dv dz= ≡ −/ / / /

If the viscous body is a Newtonian fluid, the coefficient of viscosity, , is a constant. Theη
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Fig. 2 Fluid flow in an oscillating cup

viscosity can also be expressed by a relative kinematic viscosity, µ

(9)µ η ρ= /

The total friction in the liquid forms a  torque, M(�), to apply on the cup system. Its Laplace

transform is:

(10)M s r
n

d
A

( ) = ∫∫ρµ
∂
∂

σ2 Ω

in which, A denotes the surface of contact between the liquid and the oscillating cup, n is the

normal direction of the fluid motion.

The equation of motion of the liquid is described by the Navier-Stokes equation:

(11)ρ
∂
∂

ρ µ
�

� � �u

t
u u g p u+ ⋅ ∇ = − ∇ + ∆

We usually assume that no secondary motion is developed, i.e., we omit the nonlinear terms

in the  Navier-Stokes equations. Based on this assumption, Equation (11) for cylindrical polar

coordinates, �, r and z(see Fig. 2) is rewritten as:
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where  � is an angular velocity around the z axis. The boundary conditions to be satisfied by

� are:

        -- initial condition: . The fluid is initially at rest.t r z t= =0 0, ( , , )Ω

        -- boundary conditions: . There is no slip at the boundaryr R r z t d d t= =, ( , , ) /Ω α

between

the fluid and the cup. � is an angle of the pendulum system from its equilibrium

position.

It is convenient to get dimensionless space coordinates by using an average boundary

layer thickness, .  The motion equation (12) is rewritten as one with no unitδ µ ω= / 0

variables,  and ,ξ δ= r / η δ= z /
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where w is another non-dimensional variable,
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ω α α0 0( )

Equation (14) also results in a simplified boundary condition

w s on A( , , )ξ η = 1

Equation(13) is a partial differential equation with multi-variables. It can be solved by

a well-known separation of variables technique [9]. 
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with
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where I1 denotes a Bessel function of first order.

3 Viscosity estimation equation:

After the solution of the equation of motion for liquid flow in an oscillating cup is

obtained, the friction force can be calculated using Equation (9). Substituting the force into the

system motion equation,  we get the system equation as the following formula,
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Using the solution of the motion equation (15), we can get an analytic equation for D(s)
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By inversion of the Laplace transform, angular position now can be written as the integral
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along any vertical contour C in the right-hand half of the complex plane.

Equation (20), at least, can be evaluated by residue theory since the only singularities

of integrand are poles [9]. If we get the k roots, Sk of the following equation:

(21)( ) ( )S D Sk k+ + + =∆ 0
2 1 0

we can solve equation (20) by
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The ultimate purpose is to deduce the value of viscosity from the observed behavior of

the oscillation. Assuming the oscillation of the cup system with viscous liquid is very nearly

a damped harmonic motion, the motion, �(�), can be of a form of simple harmonic motion plus

a fast decay transient motion f(t).

(23)α τ α θτ φ τθτ( ) sin ( ) ( )= + +−
0 e f∆

where . After few oscillation cycles, the experimental system will behave as aθ ω ω= / 0

simple harmonic oscillation.

(24)α θτ φθτ( ) co s( )t e≈ +−∆

which responses a main pole Sk,

(25)S ik = − ±θ( )∆

Substituting above solution into equation (21), we obtain two real equations by taking the real

and imaginary parts,
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Torklep [12] used three lowest terms of the Bessel expansion and two lowest terms of

tanh function to give a simple and approximate viscosity estimation formula,
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Substituting the equation (29) into equations (26) and (27), Torklep obtained a simplified

viscosity estimation formula
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When the dimensionless radius, �0 is larger than 10, the approximate error of Torklep’s

simplified equation (Equ. 30 and 31) is less than 0.1%. This requirement can be satisfied for

many oscillating cup viscometers. But for some viscometers, if  �0 is less than 10, Torklep’s

equation will result some additional calculation error. In the case, it is recommended to use

equation (26 - 28), which still have high calculation accuracy for any value of the
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dimensionless radius. 

4 Application

Figure 3 shows an oscillating cup viscometer at Auburn University. In the system, an

inertia bar with a crucible is suspended with a single 56cm long and .254 mm diameter steel

string. Solid samples were placed in the bottom of flat-bottomed graphite crucibles. Torsional

impulses to the oscillator for initial excitation were generated through a rotary vacuum feed

through by a computer-driven stepping motor at the top of the system. A HeNe laser is reflected

from a mirror mounted on the inertia bar/crucible assembly, and the oscillations of the reflected

laser beam are detected by two photodiodes at fixed angular positions. The working vacuum

chamber is pumped with a diffusion pump from the flange shown. A temperature-controlled

furnace is used to heat the  alumina retort tube and provide heat energy to melt the sample. Two

Pt-10% Rh thermocouples, axially spaced outside the crucible at top and bottom of the sample,

are used  to ensure an axial temperature uniformity on the test sample.

The system is initially at off equilibrium position 5 degrees and motionless. When a test

begins, a stepping motor at the top of the pendulum quickly returns the pendulum to

equilibrium position, resulting in oscillation with an initial angle of 5 degrees and with initial

velocity is zero. The oscillating motion data were collected by a PC computer. A curve-fit  is

used to fit measured timing-position data to a simple harmonic oscillation equation (Eq. 25)

and obtain the two main motion parameters, a logarithmic decrement and an oscillation period.

Previous experiments established the capability of the apparatus to characterize the

viscosity of molten nickel-based superalloys. The instrument is recently improved to measure

low density and low viscosity molten aluminum alloys. The following improvements have been

performed on the instrument.
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Fig. 3 Schematic of the oscillating cup viscometer utilized in this study
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– A new viscosity estimation model without a correction factor is used to calculate the viscosity

from measured motion parameters, which, at least, avoids the error which comes from

mathematical process (when �0<10) , the calculation error is controlled at less than 0.01% for

our viscometer. 

– Length of a sample is increased from 5 cm into 12 cm. The larger dimension of the sample

increases the rate of � /�0 in equations (30, 31) and which ensure the calculation of equation

is  convergent and accurate.

– A vertical furnace was used to uniformly heat the longer cylinder sample with temperature

difference controlled below 1 oC. This also avoid the buoyant force which  induces the second

order terms in the Navier- Stokes equation and causes the simplified liquid flow calculation

model(Eq. 11) to be incorrect.

– The system dynamic parameters are accurately remeasured. Before, some parameters’ errors

can be accomadated by a correction factor in Roscoe’s working equation. Now these

parameters must be accurately determinated before using the working equation (without a

correction factor). Thermal effects on these parameters are considered.

– The viscosities of aluminum alloys are quite low, so the decay of oscillation is much slower.

In order to record this change, more oscillation cycles are used to get the amplitude decrement

of the oscillation. The measurement time increased from 100 seconds to 400 seconds, which

ensures the accuracy of the curve-fit. 

After improving the viscometer and adopting the working equation without a correction

factor, the accuracy and repeatability are much better than before for low viscosity and low

density aluminum alloy samples.  Fig. 4 shows experimental data from the improved oscillating

cup viscometer. Three measurements were made at each temperature, and the average viscosity

data are presented.
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The liquidus temperatures of these alloys were determined by a DSC instrument at

Auburn University, which ensured the measured viscosities are in liquid zones of the alloys.

The liquid flows of alloys in mushy zones will appear non-Newtonian. In the case, equation

(9) is not satisfied, so the viscosities of two phase fluids can not be obtained by the above

method. Another technique is being investigated at Auburn University to measure viscosities

of metals in the mushy zone. Densities of the molten alloys were characterized in a separate

investigation.

Conclusion

A working equation to calculate the viscosity of fluids from measured oscillating

motion parameters without any correction factor was developed for the improved oscillating

cup viscometer in Auburn University. The technique was utilized to measure viscosities of

molten aluminum alloy samples with low densities and low viscosities. The experimental data

are very repeatable. The study of the working equation shows it has very high mathematical

accuracy, but some special attention should be taken when obtaining oscillation parameters and

other system design parameters. Otherwise, the errors which come from these parameters will

result in errors that cannot be calibrated in the viscosity estimation process by using the

working equation.
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